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Abstract 

Background and objective  Positron emission tomography/computed tomography (PET/CT) is recommended 
as the standard imaging modality for diffuse large B-cell lymphoma (DLBCL) staging. However, many studies have 
neglected the role of patients’ prognostic factors with respect to imaging PET/CT of quantitative features. In this 
paper, a multi-view learning (MVL) model is established to make full use of both clinical and imaging data to predict 
the prognosis of DLBCL patients and thereby assist doctors in decision-making.

Methods  Feature engineering, including feature extraction, feature screening by recursive feature elimination, 
and dimensionality reduction by principal component analysis, are successively performed on the clinical data 
and imaging data of the research subjects to obtain the study data. After dividing the data into training and test 
sets, an instance weighting method is applied to the training data. Subsequently, kernel mapping is performed 
on the imaging features and clinical features separately, and this kernel mapping is processed in the new kernel 
feature space using kernel canonical correlation analysis (KCCA). Lastly, model training is performed on the obtained 
common kernel subspace using a support vector machine (SVM). The final overall model, named SVM-2view-KCCA 
(SVM-2 K), was compared with three other multi-view models (Ensemble-SVM, Multi-view maximum entropy discrimi-
nation, and canonical correlation analysis). The performance of the model was evaluated on the test data with respect 
to several dichotomous metrics: accuracy, sensitivity, F1 score, the area under the curve (AUC), and G-mean.

Results  The SVM model improved AUC by 10.5%, sensitivity by 11.9%, accuracy by 9.8%, F1 score by 9.2%, 
and G-mean by 7.8% for the DLBCL test data after feature engineering based on dimensionality reduction 
and instance weighting. In the performance comparison of single-view learning models, the SVM-based integration 
of clinical and imaging features achieved the best overall performance (AUC = 86.3%, accuracy = 91.6%, sensitiv-
ity = 83.2%, F1 = 85.7%, and G-mean = 86.1%). In the comparison of MVL models, SVM-2 K achieved the best overall 
performance (AUC = 92.1%, accuracy = 96.9%, sensitivity = 90.9%, F1 = 92.8%, and G-mean = 91.4%), and the perfor-
mance of each MVL model was better than that of the best single-view learning model.
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Conclusions  MVL models outperformed single-view learning models. Of the MVL models, the proposed SVM-2 K 
achieved the best overall performance and could accurately predict patient prognosis.

Keywords  Multi-view learning, Kernel canonical correlation analysis, Support vector machine, Diffuse large B-cell 
lymphoma, Disease prognosis

Introduction
Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon subtype of non-Hodgkin’s lymphoma, account-
ing for approximately 30%–40% of non-Hodgkin’s 
lymphoma, and has become one of the types of malig-
nant tumor whose incidence is increasing year by year 
[1]. First-line treatment regimens can lead to complete 
remission (CR) in 70% of DLBCL patients. Radiomics as 
a field plays a crucial role in extracting high-dimensional 
data from medical images, which allows for compre-
hensive assessment at the molecular level. PET radiom-
ics, in particular, can provide valuable information for 
understanding tumor heterogeneity, metabolic activity, 
and treatment response. A recent review highlighted the 
challenges and promising opportunities of applying radi-
omics to PET imaging, emphasizing the need for robust 
and standardized quantitative methods for clinical appli-
cations [2]. The best tool for predicting early response 
and treatment efficacy after first-line induction therapy 
for DLBCL is positron emission tomography/computed 
tomography (PET/CT) examination, which has been rec-
ommended as the standard imaging modality for lym-
phoma staging according to international guidelines [3]. 
Quantitative and semiquantitative features extracted 
from PET/CT have been proved to have unique prog-
nostic value by a large number of studies [4]. Therefore, 
it is of great importance to utilize the quantitative and 
semi-quantitative index data of PET/CT to construct a 
prediction model to accurately identify DLBCL patients 
in complete remission and give them timely and effective 
treatment.

There are currently three main problems with PET 
prognostic modeling studies for a wide range of dis-
ease types, including DLBCL. First, to date, numerous 
studies have emerged focusing on prognostic modeling 
of DLBCL based on PET/CT features. Some of these 
studies have constructed models using only single-
modality PET/CT data, while others have combined 
PET/CT with clinical data to form multi-modality data-
sets. However, neither the independent use of features 
from these diverse sources nor their simple concatena-
tion has fully leveraged the rich information embed-
ded within the data. Data of the same object obtained 
by different means or from different perspectives is 
called multi-view data [5]. Multi-view data are charac-
terized by their multi-source, multi-descriptive nature, 

polymorphism, and high-dimensional isomorphism. 
The use of features of different nature from different 
sources, whether alone or in combination, does not 
make full use of their information content [6]. Second, 
because most DLBCL patients have a better progno-
sis and only a few have a poorer prognosis, there is a 
category imbalance in the DLBCL patient data. Tra-
ditional learning algorithms have substantial bias, 
which is manifested in the high rate of misrecognition 
by the classifier for the minority category: the minor-
ity samples tend to be misrecognized as the majority, 
which achieves a higher accuracy but also reduces the 
sensitivity, and makes the model’s performance on the 
test set much lower [7]. Third, because the high cost 
of PET/CT increases the difficulty of data collection, 
existing PET/CT-related prognostic modeling studies 
for DLBCL patients have small sample sizes, with small 
numbers (hundreds, dozens, or even fewer) of train-
ing instances. Therefore, existing machine learning and 
deep learning models are generally unable to achieve 
good performance: models trained with small sam-
ples can easily lead to overfitting to small samples and 
underfitting to the target task [8].

Multi-view learning (MVL) [9] is a solution to the 
first problem. This type of learning both analyzes the 
correlation within the same view of the data and finds 
the differences between the different views, to mine 
the hidden effective information in the multi-view data 
and increase the accuracy of the classification results. 
In addition, MVL can also reduce the feature space 
dimensions when distinguishing feature views, which 
avoids the curse of dimensionality to some extent and 
improves model robustness [5]. Traditional medical 
research has predominantly relied on single-view data. 
However, single-view data often suffer from limita-
tions such as insufficient data volume and incomplete 
information, which can lead to less accurate diagnostic 
outcomes. To overcome these limitations, multi-view 
learning has increasingly gained attention in recent 
years as a promising approach in the medical field. 
Multi-view learning is capable of simultaneously pro-
cessing and integrating medical data from different 
sources, such as clinical and imaging data of DLBCL 
patients. This approach leverages the complementarity 
between different views, integrating multiple informa-
tion sources to overcome the limitations of single-view 
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data, thereby enabling more robust data analysis and 
prediction.

To solve the second problem, instances at different 
locations in the hypothesis space of the classification task 
have different levels of importance and should be differ-
entiated appropriately [10]. When the data distribution 
is unbalanced, because a few instances are precious and 
rare, these few instances should be given higher weights. 
Therefore, instances of these different types should be 
given different weights in the classification task.

Finally, for small-sample problems, the current meth-
ods for handling small-sample data can be divided into 
three main categories [11]: increasing the amount of 
training data, optimizing the process of searching for the 
optimal model, and reducing the space to be searched 
by the model. Increasing the amount of training data is 
insufficient to effectively improve the generalization abil-
ity of the model, and it is usually difficult to generalize 
across multiple datasets. The method of optimizing the 
process of searching for the optimal model is represented 
by migration learning [12]; however, this is still unable to 
solve the small-sample problem well for some domains 
that have relatively small amounts of data. Reducing the 
search space needed by the model is a common method 
to deal with small samples in the medical field; this is 
represented by principal component analysis (PCA). In 
embedding learning, to reduce the dimensionality of the 
feature space, the samples are projected onto a lower-
dimensional space in which it is easier to distinguish 
between the different data categories.

In summary, this study aimed to solve the above three 
problems and attempted to construct a MVL model that 
is applicable to small samples with class imbalance, to 
make full use of both clinical and imaging data to predict 
the prognosis of DLBCL patients and assist doctors in 
decision-making.

Material and methods
The first part of the method is feature engineering, fea-
ture extraction, and feature screening of clinical and 
imaging data of the study subjects. In addition, to solve 
the problem of small samples and imbalance in the distri-
bution of data labels, downscaling and instance weighting 
are used, and the effects verified using public databases. 
The second part comprises the construction of the model 
using kernel canonical correlation analysis (KCCA) and 
support vector machine (SVM), combining the clini-
cal data and medical imaging data of the study subjects, 
maximizing the prognostic factors of each aspect of the 
study subjects, constructing a multi-view machine learn-
ing model for classifying DLBCL patient outcomes, and 
finally evaluating the constructed model by comparing 

the performance of the models. A flowchart of the study 
is shown in Fig. 1.

Data description
Data sources
The data used in this study were obtained from patients 
diagnosed with DLBCL between December 2010 and 
December 2020 in the hematology department of a hos-
pital in Shanxi Province, China. Two types of data were 
obtained for each subject: clinical information (includ-
ing age, gender, lactate dehydrogenase, type B symptoms, 
and Ann Arbor staging) and PET/CT imaging data. In 
this study, we categorized the efficacy of chemotherapy 
according to whether CR was achieved within eight 
courses of chemotherapy.

Inclusion and exclusion criteria were used to select the 
study subjects from the hospital database.

The inclusion criteria were the following: (a) Patients 
diagnosed with DLBCL between December 2010 and 
December 2020 in the hematology department of a hos-
pital in Shanxi Province. (b) Patients who had undergone 
PET/CT scans prior to chemotherapy. (c) Age ≥ 18 years. 
(d) Patients suitable for standard-of-care first-line chem-
otherapy. (e) Availability of all clinical, pathology, and 
imaging data.

The exclusion criteria were the following: (a) Patients 
with incomplete clinical or imaging data. (b) Patients 
with concomitant or prior history of other cancer types. 
(c) Negative baseline PET-CT.

All patients were screened for the inclusion and exclu-
sion criteria, and finally 127 patients were enrolled. A 
total of 85 cases in the CR group were negatively labeled, 
and a total of 42 cases in the non-CR group were posi-
tively labeled. For the clinical characteristics, relevant 
clinical indicators involved in oncology were collected 
and organized according to the clinical practice guide-
lines in oncology. The relevant variables were extracted: 
age, gender, tumor stage, treatment options, international 
prognostic Index (IPI), karnofsky performance status 
(KPS), white blood cell (WBC), lactate dehydrogenase 
(LDH), β2-microglobulin (β2-MG), erythrocyte sedimen-
tation rate (ESR), germinal center B-cell (GCB), hepatitis 
B virus (HBV), BCL-6, Ki-67, and R [13].

For the imaging features, image acquisition, volume of 
interest (VOI) lesion outlining and correction, voxel point 
feature measurement, histogram calculation, and correla-
tion matrix calculation were successively employed. The 
LIFEx software was used to extract semiquantitative fea-
tures, including the maximum standardized uptake value 
(SUVmax) and MTV of the PET/CT images [14], and 
quantitative features. First-order quantitative features 
include statistical properties of image voxel points, such 
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as skewness, kurtosis, and entropy. Second-order quan-
titative features include homogeneity, intensity, similar-
ity, and contrast, which reflect the image gray level with 
respect to the direction, adjacency interval, and magni-
tude of change. Higher-order features include the high 
gray level emphasis value, gray level inhomogeneity, and 
stroke length inhomogeneity, which cannot be captured 
by the human eye [15, 16]. In addition, based on the IPI 
prognostic scoring criteria and the median age of onset 
of DLBCL patients in the sample, this study divided all 
patients into the younger (≤ 60  years old) and older 

(> 60 years old) groups using a cutoff value of 60 years old 
and analyzed the prognostic differences between the two 
age groups.

18F‑FDG PET/CT
The PET/CT scans were performed using a GE Discovery 
STE hybrid scanner (USA) for both lymphoma staging 
and restaging. Imaging data acquisition occurred 60 min 
following the intravenous administration of 18F-fluoro-
deoxyglucose (FDG) at a dose of 4.44–5.55  MBq/kg of 
body weight. The whole-body 18F-FDG PET, covering the 

Fig. 1  Illustration of the research frame work
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area from the head to the mid-thigh, was carried out in 
3D mode with 6–8 bed positions, each lasting 2.5  min. 
CT data was utilized for attenuation correction of PET 
images. The CT scan settings included a tube voltage of 
120  kV, a current of 180  mA, a pitch ratio of 0.938:1, a 
slice thickness of 3.75  mm, and a rotation time of 0.8  s 
per round. The PET images were reconstructed using the 
ordered-subsets expectation maximization (OSEM) algo-
rithm with 2 iterations, 20 subsets, and a 128 × 128 pixel 
matrix size.

Public databases
Three public databases (Cleveland, Glass0, Ecoli1) with 
varying sample sizes and category imbalance rates from 
the KEEL website (https://​sci2s.​ugr.​es/​keel/​imbal​anced.​
php) were used to validate the effectiveness of fea-
ture engineering such as dimensionality reduction and 
instance weighting in this paper. The basic information 
about the datasets, including the DLBCL dataset (the 
subject of this study), is shown in Table 1.

Feature engineering
Feature extraction
Following NCCN Clinical Practice Guidelines in Oncol-
ogy (NCCN Guidelines) B-Cell Lymphomas Version 
4.2020-August 13, 2020 and NCCN Guidelines for 
Patients 2020-Diffuse Large B-Cell Lymphoma [17], the 
clinical characteristics were extracted and organized, as 
shown in Table 2.

The Department of Nuclear Medicine Imaging col-
lected the last FDG-PET/CT of the study subject, as 
imaging data, before chemotherapy was administered at 
the hospital. Semiquantitative eigenvalues of the MTV, 
TLG, and SUV values of the VOI of the tumor lesion 
of the study subject were obtained by feature measure-
ment. In addition, quantitative eigenvalues of VOI were 
obtained by radiomics analysis. The third- and higher-
order quantitative imaging features in the image were 
extracted using the gray run length matrix (GLRLM), 
neighborhood gray difference matrix (NGLDM), and 
gray zone length matrix (GLZLM), as shown in Table 3.

Feature screening
Recursive feature elimination (RFE) is used in feature 
selection [18]. In this study, mean decrease of accuracy 
(MDA) was chosen to measure feature importance. 
MDA is the average reduction in a model’s prediction 
accuracy on a sample after a feature has been excluded. 
The larger the MDA, the more important the variable is 
to the model.

Table 1  Basic dataset information

Data Sample size Number of cases in the positive group Number of cases 
in the negative 
group

Category ratios Number of features

Cleveland 177 13 164 12.62 26

Glass0 214 70 144 2.06 20

Ecoli1
DLBCL

336
127

77
42

259
85

3.36
2.02

16
44

Table 2  Clinical feature extraction

Features Grouping values N (%)

Age 0 = Less than or equal to 60 years old
1 = Older than 60 years old

70 (55)
57 (45)

Gender 0 = Male
1 = Female

60 (48)
67 (52)

Tumor staging 0 = Early III
1 = Late III, IV

41 (32)
86 (68)

Treatment options 1 = chemotherapy
0 = Chemotherapy + Radiotherapy

108 (85)
19 (15)

IPI 0 = Low
1 = Hign

89 (7)
38 (3)

KPS 0 = Greater than or equal to 80 points
1 = Less than 80 points

83 (66)
44 (34)

WBC 0 = Normal
1 = Abnormal

93 (74)
34 (26)

LDH 0 = Normal
1 = Abnormal

54 (43)
73 (57)

β2-MG 0 = Normal
1 = Abnormal

34 (27)
93 (73)

ESR 0 = Normal
1 = Abnormal

57 (45)
70 (55)

GCB 0 = No
1 = Yes

67 (53)
60 (47)

HBV 0 = Negative
1 = Positive

104 (82)
23 (18)

BCL-6 0 = Negative
1 = Positive

95 (75)
32 (25)

Ki-67 0 = Less than or equal to 90%
1 = Greater than 90%

62 (49)
65 (51)

Rituximab (R) 0 = Used
1 = Not used

75 (59)
52 (41)

https://sci2s.ugr.es/keel/imbalanced.php
https://sci2s.ugr.es/keel/imbalanced.php
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Dimensionality reduction
Because LDA is prone to overfitting for small samples with 
labeled information, PCA was chosen in this study for 
reducing the dimensionality of data [19].

Instance weighting
To solve the problem of sample label class imbalance, the 
proposed method adds sample weights during the train-
ing process. The location importance weight is denoted 
by LI. To calculate the LI of an instance, the instance first 
searches for the k nearest neighbors among all training 
instances, the number of neighbors with the same label as 
the instance is recorded as Ns, and the value of LI is defined 
as follows:

Although LI assigns different weights to instances at dif-
ferent locations, it does not consider the imbalance in the 
classification task. In general, an imbalance occurs when 
the number of instances of one class (the minority class) 
is much less than the number of instances of another class 
(the majority class). The minority class instances are more 
valuable than those in the majority class. Therefore, the 
minority class instances should be given higher weights. 
Suppose that the number of instances of the minority class 
is Nmin and the number of instances of the majority class is 
Nmaj. The imbalance cost IC of input instance x is defined 
as

The weights of the input instances x are then defined as 
follows:

LI(x) =

{

1,
Ns
k

= 0or1

1+
Ns
k
, else

IC(x) =

Nmaj

Nmin
, x ∈ minorityclass

1, x ∈ majorityclass

Model construction and training
Construction of the proposed model

Single‑view model 

Single-view1: Training using SVM (SSVM1) only 
within the image feature view.
Single-view2: Training using SVM (SSVM2) only 
within the clinical feature view.
Single-view3: Training using SVM (SSVM3) within 
the combined clinical and image views, and com-
parison with decision tree (C5.0), logistic regression 
classification (logistic), and multi-layer perceptron 
(MLP).

Multi‑view model  Ensemble-SVM (ESVM): An SVM 
classifier is trained for the clinical view and imaging view 
separately, and their classification labels are determined 
by a voting method.

Multi-view maximum entropy discrimination (MVMED): 
The joint distribution and common boundary γ of the 
parameters of the two-view MED classifiers, using clinical 
features and image features, are used to satisfy the consen-
sus principle.

Canonical correlation analysis (CCA): The common 
feature space is learned by maximizing the correlation 
between two views (clinical and imaging) to obtain the 
projection matrix, and the classifier is trained on the joint 
space matrix for label prediction.

W(x) = LI (x) × IC(x)

Table 3  PET/CT feature extraction

MTV Metabolic Tumor Volume, TLG Total Lesion Glycolysis, GLCM Gray Level Coevolution Matrix, GLRLM Gray Level Run Length Matrix, SRE/LRE Short/Long Run 
Emphasis, LGRE/HGRE Low/High Gray Run Emphasis, SRLGE/SRHGE Short Run Low/High Gray Emphasis, LRLGE/LRHGE Long Run Low/High Gray Emphasis, GLNU/RLNU 
Gray Level Non-Uniformity/ Run Length Non-Uniformity, NGLDM Neighborhood Gray Difference Matrix, GLZLM Gray Level Zone Length Matrix, LGZE/HGZE Low/high 
Gray Zone Emphasis, SZLGE/ SZHGE Short Zone Low/High Gray Emphasis, LZLGE/LZHGE Long Zone Low/High Gray Emphasis, GLNU/ZLNU Gray Level Non-Uniformity/
Zone length Non-Uniformity, ZP Zone Percentage

Indicators Methods Features

Semi-quantitative indicators Measurement SUVmax, SUVStd, MTV,TLG

Quantitative radiological indicators Histogram Skewness, kurtosis, entropy, energy

Sphericity, compacity volume

Grayscale symbiosis matrix
Grayscale run length matrix
Neighborhood grayscale difference matrix
Grayscale zone length matrix

Homogeneity,Energy,Contrast, Correlation, 
Entropy,dissimilarity

SRE/LRE,LGRE/HGRE, SRLGE/SRHGE, LRLGE/
LRHGE, GLNU/RLNU, RP

Coarseness, contrast, busyness

SZE, LZE, LGZE, HGZE, SZLGE, SZHGE, LZLGE,
LZHGE, GLNU, ZLNU, ZP
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SVM-2  K: Combines KCCA with SVM. The SVM is 
trained on the joint feature space comprising clinical and 
imaging features. On the basis of CCA, relaxation vari-
ables and constraints are added to satisfy the principles of 
similarity and complementarity, map different view fea-
tures to different kernel spaces before obtaining the com-
mon kernel subspace, and train the weights and thresh-
olds of the SVM to obtain classification results.

In addition to the proposed SVM-2  K model, single-
view and multi-view models were constructed in this 
study for performance comparison. These included CCA, 
ESVM [20], MVMED [21], decision tree [22], logistic 
classifier [23], MLP [24], and single-core SVM.

Model training
Following the random stratified sampling principle, the 
entire dataset was randomly divided into five copies 
before training, of which four copies were used as the 
training set and the remaining copy was used as the test 
set. In addition, to reduce the variation due to dataset 
partitioning, the dataset partitioning and evaluation were 
repeated 100 times and the final evaluation was based on 
the mean of the 100 results.

Model assessment
Because this study was dichotomous, values of accuracy, 
sensitivity, F-measure, AUC, and G-mean were used as 
evaluation metrics to evaluate classification performance, 
as shown in Table 4.

The results of each classifier can be classified into four 
categories: true positive (TP), true negative (TN), false pos-
itive (FP), and false negative (FN). Various evaluation met-
rics can then be computed according to the model output.

Results
Validation of feature effects on public datasets
This section aims to verify the effectiveness of the feature 
engineering method using PCA dimensionality reduction 

with instance weighting on public datasets to improve the 
model performance. Three public datasets, Cleveland, 
Glass0 and Ecoli1, are used to process the data before and 
after feature engineering, and the SVM model is used for 
training and testing. The effect of feature engineering is 
evaluated by comparing AUC, accuracy (ACC), sensitiv-
ity (SEN), F1 value and G-mean.

On the Cleveland dataset, the feature-engineered SVM 
model improves the AUC by 12% (95%CI:0.111 ~ 0.128), 
the ACC by 10.1% (95%CI:0.093 ~ 0.109), the SEN by 
20.5% (95%CI:0.194 ~ 0.211), and the F1 value and the 
G-mean by 10.4% (95%CI:0.099 ~ 0.116) and 14.1% 
(95%CI:0.134 ~ 0.153), respectively (Fig. 2), the difference 
was statistically significant (p < 0.001). These results indi-
cate that PCA downscaling and instance weighting effec-
tively improve the model’s ability to discriminate between 
minority class samples.

On the Glass0 dataset, the SVM improved the AUC by 8.3% 
(95%CI:0.074 ~ 0.091), the ACC by 9.1% (95%CI:0.083 ~ 0.099), 
the SEN by 13.2% (95%CI:0.121 ~ 0.138), and the F1 
value and the G-mean by 8.4% (95%CI:0.079 ~ 0.096) and 
10.9%(95%CI:0.102 ~ 0.121), respectively (Fig.  3), the differ-
ence was statistically significant (p < 0.001). This result shows 
that the overall performance of the model can be improved by 
feature engineering.

On the Ecoli1 dataset, feature engineering improved 
AUC by 6.2% (95%CI:0.053 ~ 0.070), ACC by 4.1% 
(95%CI:0.033 ~ 0.049), SEN by 7.2% (95%CI:0.061 ~ 0.079), 
and F1 value and G-mean by 5.4% (95%CI:0.046 ~ 0.063) 
and 6.9%(95%CI:0.062 ~ 0.081), respectively (Fig.  4), the 
difference was statistically significant (p < 0.001). These 
improvements demonstrate that feature engineering has a 
significant gain effect on small sample datasets.

Feature engineering results for the DLBCL study dataset
The aim of this part is to improve the performance of 
classification models for DLBCL patient datasets through 
feature engineering and to identify the most important 
clinical and imaging features. The clinical and imag-
ing data of DLBCL patients were feature extracted and 

Table 4  Model evaluation metrics

Classification model 
evaluation metrics

Significance Formula

Accuracy (ACC) Measures the proportion of the samples that are correctly classified Accuracy = TP+TN

TP+TN+FP+FN

Sensitivity (SEN) The recall rate, which measures the proportion of the samples that are correctly classified Sensibility = TP

TP+FN

F1 score (F1) Harmonic mean of precision and recall F = 2×Precision×Recall

Precision+Recall

Area under the curve (AUC) Area under the ROC curve with false positive rate (FPR) as the horizontal axis and true posi-
tive rate (TPR) as the vertical axis

FPR =
FP

TN+FP

TPR =
TP

TP+FN

G-mean Geometric mean of the classification accuracy of the minority class and that of the majority 
class. It is used to evaluate the performance of the model after using the unbalanced data 
of the class

G−means =
√
TPR × TNR
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screened using SVM recursive feature elimination (RFE), 
and a total of 13 features with the best performance in 
cross-validation were finally obtained using ACC as a 
measure (Accuracy = 0.863). On this basis, feature engi-
neering was performed using PCA dimensionality reduc-
tion with instance weighting, and its impact on model 
performance was analyzed.

Among the optimal features, 7 were from clinical data 
and 6 were from imaging data. ipi score (MDA = 14.16) 
and tumor volume (MDA = 11.21) were the most 
important features (Fig.  5). after PCA downscaling 

and instance weighting, the AUC of the SVM model 
was improved by 10.5% (95%CI:0.097 ~ 0.109), the 
ACC was improved by 9.8% (95%CI:0.091 ~ 0.100), the 
SEN was improved by 11.9% (95%CI:0.112 ~ 0.122), 
and the F1 value and G-means improved by 9.2% 
(95%CI:0.082 ~ 0.095) and 7.8% (95%CI:0.067 ~ 0.083), 
respectively (Table  5),  the difference was statistically 
significant (p < 0.001). These results indicate that fea-
ture engineering significantly improves the generaliza-
tion ability and prediction accuracy of the model.

Fig. 2  Comparison of classification performance of SVM before and after feature engineering on Cleveland dataset

Fig. 3  Comparison of classification performance of SVM before and after feature engineering on Glass0 dataset
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Model performance comparison
Performance of each model on DLBCL training set
Compare the performance of different single-view and 
multi-view learning models on the DLBCL training set to 
evaluate the advantages of SSVM3 and SVM-2 K models. 
Multiple single-view and multi-view models are used for 
the DLBCL training set to compare their performance on 
AUC metrics.

SSVM3 trained in the space of spliced clinical and 
imaging features performed optimally in the AUC met-
rics (Fig. 6), outperforming SSVM2 trained in the space 
of clinical features alone and SSVM1 trained in the space 
of imaging features alone, suggesting that splicing the 
clinical and imaging features helps to improve the predic-
tive performance of the model.

Fig. 4  Comparison of classification performance of SVM before and after feature engineering on Ecoli1 dataset

Fig. 5  Feature importance ranking

Table 5  Comparison of classification performance of SVM before and after feature engineering on the DLBCL study dataset

AUC​ ACC​ SEN F1 G

Before feature engineering 0.827 ± 0.024 0.863 ± 0.015 0.778 ± 0.023 0.833 ± 0.02 0.846 ± 0.031

After feature engineering 0.932 ± 0.018 0.961 ± 0.017 0.897 ± 0.015 0.925 ± 0.029 0.924 ± 0.026



Page 10 of 15Luo et al. BMC Cancer         (2024) 24:1495 

In the multi-view model, SVM-2  K outperforms 
MVMED, ESVM, and CCA with an AUC of 96.2% 
(95%CI:95.57% ~ 96.83%) for the training set (Fig.  7). 
SVM-2  K utilizes kernel-typical correlation analysis 
(KCCA) in conjunction with a support vector machine 
for optimal integration of the data and learning results.

Performance of each model on DLBCL test set
The purpose of this section is to evaluate the prediction 
performance of different single-view and multi-view 
models on the DLBCL test set, especially SVM-2 K ver-
sus other models. We tested the performance of single-
view and multi-view models separately. The single-view 
models included SSVM1, SSVM2, and SSVM3 trained 
in different feature view spaces (clinical and imaging), 

in addition to comparisons with common logistic 
regression models, C5.0, and MLP. Multi-view models 
include ESVM, MVMED, CCA, and SVM-2  K, with a 
focus on comparing the AUC, accuracy (ACC), sensi-
tivity (SEN), and F1 value vs. G-mean of each model.

Single view model performance  The performance of SVM 
models in different feature view spaces in the DLBCL test set is 
shown in Table 6. SSVM2 trained in clinical feature space out-
performs SSVM1 trained in image feature space, while SSVM3 
trained in the spliced feature space has the best performance. 
The specific performance is shown as AUC reaches 86.3% 
(95%CI:85.93% ~ 86.67%), ACC 91.6%(95%CI:90.71% ~ 92.49%), 
SEN 83.2% (95%CI:82.32% ~ 84.08%), and F1 value and 
G-mean 85.7% (95%CI:85.09% ~ 86.31%) and 86.1% (95% 

Fig. 6  Comparison of classification performance of single-view learning models on the DLBCL training set

Fig. 7  Comparison of classification performance of MVL models on the DLBCL training set
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CI:85.34% ~ 86.86%), respectively. SSVM3 makes full use of the 
multi-view data by integrating the clinical and imaging features, 
which makes it superior to the single-view model in terms of 
performance.

Comparison with other single‑view learning models  Table  7 
demonstrates the results of SSVM3 compared with common 
single-view learning models (Logistic regression, C5.0 and 
MLP). SSVM3 outperforms the other models across the board. 
The specific performance is shown as AUC reaches 86.3% 
(95%CI:85.93% ~ 86.67%), ACC 91.6%(95%CI:90.71% ~ 92.49%), 
SEN 83.2% (95%CI:82.32% ~ 84.08%), and F1 value and 
G-mean 85.7% (95%CI:85.09% ~ 86.31%) and 86.1% 
(95%CI:85.34% ~ 86.86%), respectively. This result indi-
cates that SSVM3 is able to better capture key informa-
tion when combining clinical and imaging features, signif-
icantly improving the predictive ability of the model.

Multi‑view model performance  The test results of 
the multi-view model are shown in Table 8. SVM-2 K 
performed the best on all the metrics, with an AUC 
of 92.1% (95%CI:91.69% ~ 92.51%), an ACC of 96.9% 
(95%CI:96.22% ~ 97.16%), and F1 and G-mean val-
ues of 92.8% (95%CI:92.39% ~ 93.21%) and 91.4% 
(95%CI:90.78% ~ 92.02%), respectively. Although its 
sensitivity (SEN = 90.9% (95%CI:90.28% ~ 91.52%)) 
was slightly lower than that of MVMED (SEN 
= 91.1% (95%CI:90.44% ~ 91.76%)), SVM-2  K had 
the best overall performance. Through the combina-
tion of kernel typical correlation analysis (KCCA) and 
support vector machine, SVM-2 K is able to effectively 
integrate the complementary information of different 
feature views, which significantly improves the overall 
performance.

Model AUC comparison  Figure 8 shows the comparison of 
the AUC values of the models on the DLBCL test set. It can 
be seen that the AUCs of the multi-view models are all better 
than the single-view model, and SVM-2 K has the best per-
formance with an AUC of 92.1% (95%CI:91.49% ~ 92.71%). 
This further validates that SVM-2 K can effectively improve 
the prediction performance in multi-view learning.

Discussion
DLBCL has a high relapse rate. Therefore, for each 
DLBCL patient it is necessary to make a comprehen-
sive assessment of the efficacy of treatment in advance 
and prepare a personalized treatment plan accordingly. 
The IPI scoring system evaluates the patient’s progno-
sis only with reference to the pre-treatment clinical 
characterization and ignores the role of the patient’s 
prognostic factors with respect to imaging PET/CT, 
including semiquantitative features (such as SUV) and 
quantitative features (such as radiological features). 
This is because the clinical data and imaging data origi-
nate from different sources and have different struc-
tures; in addition, their nature is different, making it 
difficult to use them in an integrated manner. There-
fore, the aim of this study was to construct a prognostic 
model for DLBCL patients with high predictive perfor-
mance by using a combination of KCCA and SVM to 
make full use of patients’ imaging data and clinical data.

After feature screening, as shown in Fig.  5, most of 
the clinical features selected have been shown to be 
associated with the prognosis of DLBCL. IPI [25, 26] 
is a recognized prognostic indicator for DLBCL, and 
studies have demonstrated that high IPI scores are 
significantly associated with poor patient progno-
sis; advanced disease stage is a risk factor for DLBCL 
prognosis, and is associated with low patient survival 
and short survival time [26]. Patients with primary 
gastrointestinal DLBCL with elevated LDH [27] have 
a corresponding reduction in overall survival and 

Table 6  Comparison of SVM performance on different feature 
views of the test set (%)

Performance 
indicators

SSVM1 SSVM2 SSVM3

AUC​ 72.4 ± 2.43 81.1 ± 1.13 86.3 ± 1.31
ACC​ 81.3 ± 3.41 87.1 ± 2.41 91.6 ± 3.14
SEN 70.2 ± 4.65 78.9 ± 1.91 83.2 ± 3.11
F1 score 75.0 ± 2.33 77.3 ± 1.84 85.7 ± 2.16
G-mean 77.6 ± 1.44 80.1 ± 2.01 86.1 ± 2.66

Table 7  Comparison of classification performance of single-view 
models on the test set (%)

Performance 
indicators

MLP C5.0 logistic SSVM3

AUC​ 84.1 ± 2.13 82.1 ± 2.41 79.6 ± 1.13 86.3 ± 1.31

ACC​ 90.3 ± 1.98 85.2 ± 3.33 80.5 ± 2.15 91.6 ± 3.14

SEN 82.6 ± 2.89 80.4 ± 1.21 76.1 ± 2.47 83.2 ± 3.11

F1 score 85.2 ± 3.15 81.8 ± 2.16 79.2 ± 1.66 85.7 ± 2.16

G-mean 83.2 ± 2.83 82.4 ± 1.95 78.7 ± 1.77 86.1 ± 2.66

Table 8  Comparison of classification performance of multi-view 
models on the test set (%)

Performance 
indicators

ESVM MVMED CCA​ SVM-2K

AUC​ 88.1 ± 2.22 90.1 ± 1.76 88.7 ± 2.55 92.1 ± 1.45
ACC​ 92.8 ± 1.32 92.8 ± 1.12 91.3 ± 1.87 96.9 ± 1.65
SEN 85.4 ± 3.11 91.1 ± 2.31 82.9 ± 1.34 90.9 ± 2.17

F1 score 87.4 ± 2.31 90.3 ± 2.46 87.1 ± 2.23 92.8 ± 1.45
G-mean 86.8 ± 1.14 90.7 ± 2.77 82.2 ± 2.32 91.4 ± 2.17
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progression-free survival. According to a study by 
Kanemasa et  al. [27], β2-M is an important prognos-
tic factor in patients with DLBCL, and studies have 
also shown that the use of immunotherapy contain-
ing rituximab (R) is an effective chemotherapy for 
patients with limited aggressive non-Hodgkin’s lym-
phoma with a poor prognosis or high disease grade 
[28]. Of the imaging features, SUVmax and MTV are 
the most common semiquantitative radiological fea-
tures: they have been extensively reported to correlate 
with disease-free survival in DLBCL [29]. Volume and 
compacity reflect the response to tumor shape and vol-
ume, which is a factor that influences disease severity 
and treatment difficulty. Kurtosis is a statistic of voxel 
points in the histogram analysis of the patient’s PET 
image, and is quantitatively descriptive of the tumor 
in radiology. GLNU is a higher-order statistical feature 
extracted from the voxel points of the image by matrix 
computation using the GLRLM statistical model [29, 
30], and it also shows the prognostic impact of higher-
order radiologic features on DLBCL.

To solve the problem that the small sample size and 
unbalanced class distribution of DLBCL patient data 
may affect the performance of prediction models, this 
study used feature engineering including PCA and 
instance weighting. Table  4 shows that feature engi-
neering is helpful for improving classification perfor-
mance: the AUC of the SVM learner on the DLBCL 
study dataset was increased by 10.5% after PCA and 
instance weighting. Many studies in recent years have 
shown that the problem of class imbalance in data 
seriously affects the classification accuracy of predic-
tion models. Because there are far more instances in 
the majority class than the minority class in the origi-
nal data, and the minority class instances are less 
informative, the classification model will be largely 

biased toward the majority class in the training process 
because this achieves higher accuracy. Therefore, the 
model may not be sufficiently sensitive to the minority 
class instances, resulting in low sensitivity. In addition, 
instances in different locations have different impor-
tance in the classification task. Boundary instances 
have a significant effect on classification, whereas inter-
nal instances contribute little to the classification task. 
Therefore, it is unreasonable to treat all instances in 
the training set equally. Appropriately assigning high 
weights to boundary instances can provide advantages 
for the classification task. In the proposed method, 
location weights are added to the category weights, 
both to optimize the final decision surface of the clas-
sifier and to enhance the classification performance for 
the minority class, thereby improving the sensitivity 
and thus the AUC.

To solve the problem of how to adequately and ration-
ally use the imaging data of DLBCL patients to provide 
reference values for patient prognosis, this paper pre-
sents a MVL method that combines KCCA with an SVM 
to construct the SVM-2  K model for patient progno-
sis, and compares its results with those of a single-view 
learning model.

Table 6 shows that, of the single-view learning models, 
SVM achieved the best performance. MLP and C5.0 both 
realize linear to nonlinear conversion by adding interme-
diate layers. However, because of the problem of over-
fitting and the poor robustness of decision trees, single 
decision trees are often not as good as they should be in 
practical applications. SVM makes effective use of kernel 
methods for nonlinear transformations and has lower 
computational complexity than MLP and decision trees, 
which makes it a good choice for solving nonlinear prob-
lems on small datasets. As shown in Fig. 6 and Table 5, 
the classification performance of SSVM3 (AUC = 86.3%), 

Fig. 8  Comparison of the area under the ROC curve achieved by each model on the test set
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trained in the feature space that combines imaging fea-
tures with clinical features, was better than that of 
SSVM1 (AUC = 72.4%) and SSVM2 (AUC = 81.1%). This 
proves that combining the clinical features with imaging 
features for training is helpful for improving the perfor-
mance of classification. It also proves indirectly that the 
semiquantitative features and quantitative radiological 
features of PET/CT images are valuable for the prognosis 
of patients with DLBCL. The performance of SSVM2 was 
better than that of SSVM1, which indicates that the clini-
cal features extracted in this study have higher prognostic 
value than the imaging features that were extracted.

Figure 8 compares the performance of the MVL mod-
els ESVM (AUC = 88.1%), MVMED (AUC = 90.1%), CCA 
(AUC = 88.7%), and SVM-2 K (AUC = 92.1%). All results 
are better than the results of the best-performing single-
view learning model SSVM3. The results show that the 
performance of MVL models on the dataset used in this 
study is better than that of single-view learning models. 
Most previous DLBCL prognostic studies were con-
ducted using either clinical data alone or imaging data 
alone. Wang et  al. [31] assessed the predictive accuracy 
of tumor recurrence in DLBCL patients by using ROC 
curves and obtained a sensitivity of 83.3%, specificity 
of 78.3%, and AUC of 0.864. Gong et  al. [32] analyzed 
the risk factors associated with recurrence in DLBCL 
patients, and the 1-year, 2-year, 3-year, and 4-year AUC 
values were 0.812, 0.850, 0.837, and 0.801, respectively; 
this performance is not as good as that of the MVL 
model designed in our study. If it uses clinical data alone, 
a model cannot make use of the important imaging data 
generated during patient treatment; if it uses imaging 
data alone, it omits key clinical information. In addition, 
clinical data and imaging data are not distinguished by 
algorithms that merge all features to adapt to the learn-
ing environment when dealing with multi-view feature 
data. Such direct merging ignores the attributes of the 
same object distributed in different feature spaces with 
different data-specific statistical properties and different 
physical significance. This reduces the amount of infor-
mation that the model learns from the data, resulting in 
worse performance.

The comparison of classification performance on the 
test set by each multi-view model, in Table 7, shows that 
the proposed model SVM-2  K achieved the best over-
all performance (AUC = 92.1%, accuracy = 96.9%, sen-
sitivity = 90.9%, F1 = 92.8%, and G-mean = 91.4%). The 
CCA and MVMED models both consider the correla-
tion between view features but ignore the differences 
between different views (i.e., complementarity). The pro-
posed model SVM-2 K uses an insensitive L1 parametri-
zation when considering the constraints of correlation 
and uses slack variables to measure the number of them 

that do not conform to the similarity; to some extent, 
this can make better use of the complementary informa-
tion between different features in the data and thereby 
improve the performance of the model. In a sense, MVL 
can also be referred to as integrated-view learning. The 
ESVM evaluated in this study uses the method of train-
ing an SVM classifier for the clinical view and imaging 
view separately, and integrating the classification results 
obtained under each view by the voting method for late 
integration. SVM-2  K combines KCCA and SVM and 
constructs their respective kernel matrices using kernel 
functions for different feature types to represent the local 
characteristics, evaluates and fuses each kernel matrix 
to reflect the global characteristics, and finally classifies 
them through the fused kernel matrix. Farquhar et  al. 
[33] presented both experimental and theoretical analy-
ses of SVM-2 K, showing superior results.

The innovations of this study include the following. 
First, in this study, not only conventional semi-quanti-
tative metrics were used, but also more complex quan-
titative features of higher-order imaging were extracted 
by a radiomics approach, which provided more detailed 
and potentially more valuable information about the 
prognosis of patients with DLBCL, and improved the 
predictive performance of the model and the value of its 
clinical application. Second, because clinical data and 
imaging data have different patient categories and are of 
different nature, the modeling scheme of MVL is used 
to rationalize their use and improve the performance of 
classification. Third, our model handles small samples of 
class-imbalanced data using PCA and instance weighting 
to achieve superior performance.

The shortcomings of this study are as follows. First, 
although the genetic data of DLBCL patients have been 
shown to have prognostic value in a large number of 
studies, because of the difficulties of collecting and 
testing genetic data of patients, such data have not been 
used for modeling in this study. Second, this research 
was based on the data provided by a specific hospital. 
Therefore, external validation is necessary to evaluate 
the generalizability of the model and reproducibility of 
the results.

Conclusions
In this paper, we mainly propose the use of KCCA 
and SVM methods to model the prognosis of DLBCL 
patients. After feature engineering, such as research 
object screening, feature extraction, feature screen-
ing, dimensionality reduction, and instance weight-
ing, we divide the data into training and test sets, and 
finally train the proposed model and evaluate its per-
formance. The results lead to the following conclusions. 
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1. Feature engineering, including dimensionality reduc-
tion and instance weighting, largely solves the problem 
of decreased sensitivity when the model is trained on 
small samples with imbalanced class distribution. 2. The 
semiquantitative features of PET/CT images and the 
quantitative radiological features have some prognostic 
value for patients with DLBCL. 3. The performance of 
the MVL model is better than that of the single-view 
learning model; the proposed model SVM-2 K has the 
best overall performance and can accurately predict 
the prognosis of patients, which is important for the 
treatment of DLBCL patients and assisting doctors’ 
decision-making.

Acknowledgements
We thank Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text 
of a draft of this manuscript.

Authors’ contributions
YanHong Luo, ZhenHuan Yang, and YongAo Li designed the study, and Jie 
Zhou provided helpful advice. YongAo Li, ZhenHuan Yang, Kai Yu, YuJiao Guo, 
XueMan Wang, Na Yang, Yan Zhang, and TingTing Zheng collected and organ-
ized the dataset. YanBo Zhang, HongMei Yu, and ZhiQiang Zhao provided 
useful guidance. ZhenHuan Yang designed the code. ZhenHuan Yang and 
YongAo Li wrote the paper, and drafted and revised the work with the help of 
YanHong Luo. Both Jie Zhou and YanHong Luo are corresponding authors.

Funding
This work was supported by the National Natural Science Foundation of 
China [Grant Nos. 81502897, 82273742 and 82173631], Applied Basic Research 
Program of Shanxi Province [Grant No.202103021224245], Shanxi Province 
Graduate Education Innovation Program [Grant No.2024JG088], and Teaching 
Reform and Innovation Program for Higher Education Institutions in Shanxi 
Province (General Program) [Grant No.J20240531].

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
This study did not involve any human trials. We have obtained ethics approval 
from the Shanxi Cancer Hospital ethics committee, with reference number 
201,835. The data did not contain personal and health information that could 
be connected back to the original identifiers. The data used in this study was 
anonymized before its use. The requirement to obtain informed consent 
was waived because of the secondary nature of the de-identified data in the 
retrospective study design.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Health Statistics, School of Public Health, Shanxi Medical 
University, Taiyuan 030001, China. 2 Shanxi Provincial Key Laboratory of Major 
Diseases Risk Assessment, Taiyuan 030001, China. 3 Department of Hematol-
ogy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer 
Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated 
to Shanxi Medical University, Taiyuan 030013, China. 4 Department of Nuclear 
Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer 
Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated 
to Shanxi Medical University, Taiyuan 030013, China. 

Received: 14 March 2024   Accepted: 27 November 2024

References
	1.	 Brooks E, Fang P, Pinnix C. Salvage radiotherapy for primary refrac-

tory and relapsed diffuse large B-Cell lymphoma. Br J Radiol. 
2021;94(1127):20210360.

	2.	 Stefano A. Challenges and limitations in applying radiomics to PET imag-
ing: possible opportunities and avenues for research. Comput Biol Med. 
2024;179:108827.

	3.	 Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial 
evaluation, staging, and response assessment of Hodgkin and non-Hodg-
kin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059.

	4.	 Shagera QA, Cheon GJ, Koh Y, et al. Prognostic value of metabolic 
tumour volume on baseline 18F-FDG PET/CT in addition to NCCN-IPI 
in patients with diffuse large B-cell lymphoma: further stratification 
of the group with a high-risk NCCN-IPI. Eur J Nucl Med Mol Imaging. 
2019;46(7):1417–27.

	5.	 Tang J, Tian Y. A survey on multi-view learning (in Chinese). Mathematical 
modeling and its applications. 2017;6(3):16.

	6.	 Wang Z, Chen L, Zhang J, et al. Multi-view ensemble learning with 
empirical kernel for heart failure mortality prediction. Commun Numer 
Methods Eng. 2020;36(1):e3273.1–e.17.

	7.	 Ali H, Salleh MNM, Saedudin R, et al. Imbalance class problems in data 
mining: a review. Indonesian J Electric Eng Comp Sci. 2019;14(3):1560–71.

	8.	 Wang Y, Yao Q, Kwok JT, et al. Generalizing from a few examples: a survey 
on few-shot learning. ACM Comp Surveys (CSUR). 2020;53(3):1–34.

	9.	 Xu C, Tao D, Xu C. A survey on multi-view learning[J]. arXiv preprint 
arXiv:1304.5634. 2013.

	10.	 Zhu Z, Wang Z, Li D, et al. Multiple partial empirical kernel learning with 
instance weighting and boundary fitting. Neural Netw. 2020;123:26–37.

	11.	 Wang Y, Yao Q. Few-shot learning: a survey. 2019.
	12.	 Zhao W. Research on the deep learning of the small sample data based 

on transfer learning[C]. AIP conference proceedings. AIP Publishing. 
2017;1864(1).

	13.	 Koh M, Hayakawa Y, Akai T, et al. Novel biomarker, phosphorylated T-LAK 
cell-originated protein kinase (p-TOPK) can predict outcome in primary 
central nervous system lymphoma. Neuropathology. 2018;38(3):228–36.

	14.	 Song MK, Yang DH, Lee GW, et al. High total metabolic tumor volume 
in PET/CT predicts worse prognosis in diffuse large B cell lymphoma 
patients with bone marrowinvolvement in rituximab era. Leukemia Res. 
2016;42:1–6.

	15.	 Rahim MK, Kim SE, So H, et al. Recent trends in PET image interpretations 
using volumetric and texture-based quantification methods in nuclear 
oncology. Nucl Med Mol Imaging. 2014;48(1):1–15.

	16.	 Forgacs A, Pall H, Dahlbom M, et al. A study on the basic criteria for 
selecting heterogeneity parameters of F18-FDG PET images. PloS One. 
2016;11(10):e0164113.

	17.	 Wierda WG, Byrd JC, Abramson JS, et al. NCCN guidelines insights: chronic 
lymphocytic leukemia/small lymphocytic lymphoma, version 22019. J 
Nat Comprehensive Cancer Netw. 2019;17(1):12–20.

	18.	 Louw N, Steel S. Variable selection in kernel Fisher discriminant analysis 
by means of recursive feature elimination. Comput Stat Data Anal. 
2006;51(3):2043–55.

	19.	 Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev: 
Comput Stat. 2010;2(4):433–59.

	20.	 Alickovic E, Subasi A. Ensemble SVM method for automatic sleep stage 
classification. IEEE Trans Instrum Meas. 2018;67(6):1258–65.

	21.	 Sun S, Chao G. Multi-view maximum entropy discrimination[C]. Twenty-
third international joint conference on artificial intelligence. 2013.

	22.	 Myles AJ, Feudale RN, Liu Y, et al. An introduction to decision tree mod-
eling. J Chemometrics: A J Chemometrics Soc. 2004;18(6):275–85.

	23.	 Zou X, Hu Y, Tian Z, et al. Logistic regression model optimization and case 
analysis[C]. 2019 IEEE 7th international conference on computer science 
and network technology (ICCSNT). IEEE; 2019. p. 135–9.

	24.	 Riedmiller M, Lernen A. Multi layer perceptron. Machine learning lab 
special lecture: University of Freiburg; 2014. p. 7–24.



Page 15 of 15Luo et al. BMC Cancer         (2024) 24:1495 	

	25.	 Coiffier B, Lepage E, BRIèRE J, et al. CHOP chemotherapy plus rituximab 
comparedwith CHOP alone in elderly patients with diffuse large-B-cell 
lymphoma. New England J Med. 2002;346(4):235–42.

	26.	 Zhang A, Ohshima K, Sato K, et al. Prognostic clinicopathologic factors, 
including immunologic expression in diffuse large B-cell lymphomas. 
Pathol Int. 1999;49(12):1043–52.

	27.	 Mao L, Wang X, Wang C, et al. Evaluation of different staging systems and 
prognostic analysis of 110 primary gastrointestinal diffuse large B cell 
lymphoma. Zhonghua Yi Xue Za Zhi. 2019;99(24):1853–8.

	28.	 Kanemasa Y, Shimoyama T, Sasaki Y, et al. Beta-2 microglobulin as a sig-
nificant prognostic factor and a new risk model for patients with diffuse 
large B-cell lymphoma. Hematol Oncol. 2017;35(4):440–6.

	29.	 Xiao G, Meng J, Zhang J, et al. Clinical application of detecting 21-gene 
recurrence score in predicating prognosis and therapy response of 
patients with breast cancer from two medical centers. Cancer Invest. 
2017;35(10):639–46.

	30.	 Zhou Y, Ma XL, Pu LT, et al. Prediction of overall survival and progression‐
free survival by the 18FFDG PET/CT radiomic features in patients with 
primary gastric diffuse large B‐cell lymphoma[J]. Contrast Media Mol 
Imaging. 2019;2019(1):5963607.

	31.	 Wang C, Zhou X, Liu GY, et al. Analysis of different protein expression 
levels in peripheral blood circulating tumor cells from patients with dif-
fuse large B-cell lymphoma and their predictive efficiency for recurrence. 
Zhonghua Yi Xue Za Zhi. 2023;103(17):1328–33.

	32.	 Gong Y, Yan H, Yang Y, et al. Construction and validation of a novel nomo-
gram for predicting the recurrence of diffuse large B cell lymphoma 
treated with R-CHOP. Pharmgenomics Pers Med. 2023;16:291–301.

	33.	 Farquhar JDR, Hardoon DR, Meng H, et al. Two view learning: SVM-2K, 
theory and practice[C]. Proceedings of the 18th International Conference 
on Neural Information Processing Systems. 2005. p. 355–62.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A multi-view prognostic model for diffuse large B-cell lymphoma based on kernel canonical correlation analysis and support vector machine
	Abstract 
	Background and objective 
	Methods 
	Results 
	Conclusions 

	Introduction
	Material and methods
	Data description
	Data sources
	18F-FDG PETCT
	Public databases

	Feature engineering
	Feature extraction
	Feature screening
	Dimensionality reduction
	Instance weighting

	Model construction and training
	Construction of the proposed model
	Model training

	Model assessment

	Results
	Validation of feature effects on public datasets
	Feature engineering results for the DLBCL study dataset
	Model performance comparison
	Performance of each model on DLBCL training set
	Performance of each model on DLBCL test set


	Discussion
	Conclusions
	Acknowledgements
	References


