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Abstract

Background and objective Positron emission tomography/computed tomography (PET/CT) is recommended

as the standard imaging modality for diffuse large B-cell lymphoma (DLBCL) staging. However, many studies have
neglected the role of patients’ prognostic factors with respect to imaging PET/CT of quantitative features. In this
paper, a multi-view learning (MVL) model is established to make full use of both clinical and imaging data to predict
the prognosis of DLBCL patients and thereby assist doctors in decision-making.

Methods Feature engineering, including feature extraction, feature screening by recursive feature elimination,

and dimensionality reduction by principal component analysis, are successively performed on the clinical data

and imaging data of the research subjects to obtain the study data. After dividing the data into training and test

sets, an instance weighting method is applied to the training data. Subsequently, kernel mapping is performed

on the imaging features and clinical features separately, and this kernel mapping is processed in the new kernel
feature space using kernel canonical correlation analysis (KCCA). Lastly, model training is performed on the obtained
common kernel subspace using a support vector machine (SYM). The final overall model, named SVM-2view-KCCA
(SVM-2 K), was compared with three other multi-view models (Ensemble-SVM, Multi-view maximum entropy discrimi-
nation, and canonical correlation analysis). The performance of the model was evaluated on the test data with respect
to several dichotomous metrics: accuracy, sensitivity, F1 score, the area under the curve (AUC), and G-mean.

Results The SVM model improved AUC by 10.5%, sensitivity by 11.9%, accuracy by 9.8%, F1 score by 9.2%,

and G-mean by 7.8% for the DLBCL test data after feature engineering based on dimensionality reduction

and instance weighting. In the performance comparison of single-view learning models, the SYM-based integration
of clinical and imaging features achieved the best overall performance (AUC=286.3%, accuracy =91.6%, sensitiv-
ity=83.2%, F1=85.7%, and G-mean=86.1%). In the comparison of MVL models, SYM-2 K achieved the best overall
performance (AUC=92.1%, accuracy =96.9%, sensitivity =90.9%, F1=92.8%, and G-mean=91.4%), and the perfor-
mance of each MVL model was better than that of the best single-view learning model.
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Conclusions MVL models outperformed single-view learning models. Of the MVL models, the proposed SVM-2 K
achieved the best overall performance and could accurately predict patient prognosis.

Keywords Multi-view learning, Kernel canonical correlation analysis, Support vector machine, Diffuse large B-cell

lymphoma, Disease prognosis

Introduction

Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon subtype of non-Hodgkin’s lymphoma, account-
ing for approximately 30%-40% of non-Hodgkin’s
lymphoma, and has become one of the types of malig-
nant tumor whose incidence is increasing year by year
[1]. First-line treatment regimens can lead to complete
remission (CR) in 70% of DLBCL patients. Radiomics as
a field plays a crucial role in extracting high-dimensional
data from medical images, which allows for compre-
hensive assessment at the molecular level. PET radiom-
ics, in particular, can provide valuable information for
understanding tumor heterogeneity, metabolic activity,
and treatment response. A recent review highlighted the
challenges and promising opportunities of applying radi-
omics to PET imaging, emphasizing the need for robust
and standardized quantitative methods for clinical appli-
cations [2]. The best tool for predicting early response
and treatment efficacy after first-line induction therapy
for DLBCL is positron emission tomography/computed
tomography (PET/CT) examination, which has been rec-
ommended as the standard imaging modality for lym-
phoma staging according to international guidelines [3].
Quantitative and semiquantitative features extracted
from PET/CT have been proved to have unique prog-
nostic value by a large number of studies [4]. Therefore,
it is of great importance to utilize the quantitative and
semi-quantitative index data of PET/CT to construct a
prediction model to accurately identify DLBCL patients
in complete remission and give them timely and effective
treatment.

There are currently three main problems with PET
prognostic modeling studies for a wide range of dis-
ease types, including DLBCL. First, to date, numerous
studies have emerged focusing on prognostic modeling
of DLBCL based on PET/CT features. Some of these
studies have constructed models using only single-
modality PET/CT data, while others have combined
PET/CT with clinical data to form multi-modality data-
sets. However, neither the independent use of features
from these diverse sources nor their simple concatena-
tion has fully leveraged the rich information embed-
ded within the data. Data of the same object obtained
by different means or from different perspectives is
called multi-view data [5]. Multi-view data are charac-
terized by their multi-source, multi-descriptive nature,

polymorphism, and high-dimensional isomorphism.
The use of features of different nature from different
sources, whether alone or in combination, does not
make full use of their information content [6]. Second,
because most DLBCL patients have a better progno-
sis and only a few have a poorer prognosis, there is a
category imbalance in the DLBCL patient data. Tra-
ditional learning algorithms have substantial bias,
which is manifested in the high rate of misrecognition
by the classifier for the minority category: the minor-
ity samples tend to be misrecognized as the majority,
which achieves a higher accuracy but also reduces the
sensitivity, and makes the model’s performance on the
test set much lower [7]. Third, because the high cost
of PET/CT increases the difficulty of data collection,
existing PET/CT-related prognostic modeling studies
for DLBCL patients have small sample sizes, with small
numbers (hundreds, dozens, or even fewer) of train-
ing instances. Therefore, existing machine learning and
deep learning models are generally unable to achieve
good performance: models trained with small sam-
ples can easily lead to overfitting to small samples and
underfitting to the target task [8].

Multi-view learning (MVL) [9] is a solution to the
first problem. This type of learning both analyzes the
correlation within the same view of the data and finds
the differences between the different views, to mine
the hidden effective information in the multi-view data
and increase the accuracy of the classification results.
In addition, MVL can also reduce the feature space
dimensions when distinguishing feature views, which
avoids the curse of dimensionality to some extent and
improves model robustness [5]. Traditional medical
research has predominantly relied on single-view data.
However, single-view data often suffer from limita-
tions such as insufficient data volume and incomplete
information, which can lead to less accurate diagnostic
outcomes. To overcome these limitations, multi-view
learning has increasingly gained attention in recent
years as a promising approach in the medical field.
Multi-view learning is capable of simultaneously pro-
cessing and integrating medical data from different
sources, such as clinical and imaging data of DLBCL
patients. This approach leverages the complementarity
between different views, integrating multiple informa-
tion sources to overcome the limitations of single-view
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data, thereby enabling more robust data analysis and
prediction.

To solve the second problem, instances at different
locations in the hypothesis space of the classification task
have different levels of importance and should be differ-
entiated appropriately [10]. When the data distribution
is unbalanced, because a few instances are precious and
rare, these few instances should be given higher weights.
Therefore, instances of these different types should be
given different weights in the classification task.

Finally, for small-sample problems, the current meth-
ods for handling small-sample data can be divided into
three main categories [11]: increasing the amount of
training data, optimizing the process of searching for the
optimal model, and reducing the space to be searched
by the model. Increasing the amount of training data is
insufficient to effectively improve the generalization abil-
ity of the model, and it is usually difficult to generalize
across multiple datasets. The method of optimizing the
process of searching for the optimal model is represented
by migration learning [12]; however, this is still unable to
solve the small-sample problem well for some domains
that have relatively small amounts of data. Reducing the
search space needed by the model is a common method
to deal with small samples in the medical field; this is
represented by principal component analysis (PCA). In
embedding learning, to reduce the dimensionality of the
feature space, the samples are projected onto a lower-
dimensional space in which it is easier to distinguish
between the different data categories.

In summary, this study aimed to solve the above three
problems and attempted to construct a MVL model that
is applicable to small samples with class imbalance, to
make full use of both clinical and imaging data to predict
the prognosis of DLBCL patients and assist doctors in
decision-making.

Material and methods

The first part of the method is feature engineering, fea-
ture extraction, and feature screening of clinical and
imaging data of the study subjects. In addition, to solve
the problem of small samples and imbalance in the distri-
bution of data labels, downscaling and instance weighting
are used, and the effects verified using public databases.
The second part comprises the construction of the model
using kernel canonical correlation analysis (KCCA) and
support vector machine (SVM), combining the clini-
cal data and medical imaging data of the study subjects,
maximizing the prognostic factors of each aspect of the
study subjects, constructing a multi-view machine learn-
ing model for classifying DLBCL patient outcomes, and
finally evaluating the constructed model by comparing
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the performance of the models. A flowchart of the study
is shown in Fig. 1.

Data description

Data sources

The data used in this study were obtained from patients
diagnosed with DLBCL between December 2010 and
December 2020 in the hematology department of a hos-
pital in Shanxi Province, China. Two types of data were
obtained for each subject: clinical information (includ-
ing age, gender, lactate dehydrogenase, type B symptoms,
and Ann Arbor staging) and PET/CT imaging data. In
this study, we categorized the efficacy of chemotherapy
according to whether CR was achieved within eight
courses of chemotherapy.

Inclusion and exclusion criteria were used to select the
study subjects from the hospital database.

The inclusion criteria were the following: (a) Patients
diagnosed with DLBCL between December 2010 and
December 2020 in the hematology department of a hos-
pital in Shanxi Province. (b) Patients who had undergone
PET/CT scans prior to chemotherapy. (c) Age > 18 years.
(d) Patients suitable for standard-of-care first-line chem-
otherapy. (e) Availability of all clinical, pathology, and
imaging data.

The exclusion criteria were the following: (a) Patients
with incomplete clinical or imaging data. (b) Patients
with concomitant or prior history of other cancer types.
(c) Negative baseline PET-CT.

All patients were screened for the inclusion and exclu-
sion criteria, and finally 127 patients were enrolled. A
total of 85 cases in the CR group were negatively labeled,
and a total of 42 cases in the non-CR group were posi-
tively labeled. For the clinical characteristics, relevant
clinical indicators involved in oncology were collected
and organized according to the clinical practice guide-
lines in oncology. The relevant variables were extracted:
age, gender, tumor stage, treatment options, international
prognostic Index (IPI), karnofsky performance status
(KPS), white blood cell (WBC), lactate dehydrogenase
(LDH), p2-microglobulin (2-MG), erythrocyte sedimen-
tation rate (ESR), germinal center B-cell (GCB), hepatitis
B virus (HBV), BCL-6, Ki-67, and R [13].

For the imaging features, image acquisition, volume of
interest (VOI) lesion outlining and correction, voxel point
feature measurement, histogram calculation, and correla-
tion matrix calculation were successively employed. The
LIFEx software was used to extract semiquantitative fea-
tures, including the maximum standardized uptake value
(SUVmax) and MTV of the PET/CT images [14], and
quantitative features. First-order quantitative features
include statistical properties of image voxel points, such
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as skewness, kurtosis, and entropy. Second-order quan-
titative features include homogeneity, intensity, similar-
ity, and contrast, which reflect the image gray level with
respect to the direction, adjacency interval, and magni-
tude of change. Higher-order features include the high
gray level emphasis value, gray level inhomogeneity, and
stroke length inhomogeneity, which cannot be captured
by the human eye [15, 16]. In addition, based on the IPI
prognostic scoring criteria and the median age of onset
of DLBCL patients in the sample, this study divided all
patients into the younger (<60 years old) and older

exploration of factors influencing

Model evaluation
and exploration

(>60 years old) groups using a cutoff value of 60 years old
and analyzed the prognostic differences between the two
age groups.

'8F-FDG PET/CT

The PET/CT scans were performed using a GE Discovery
STE hybrid scanner (USA) for both lymphoma staging
and restaging. Imaging data acquisition occurred 60 min
following the intravenous administration of '*F-fluoro-
deoxyglucose (FDG) at a dose of 4.44-5.55 MBq/kg of
body weight. The whole-body *F-FDG PET, covering the
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area from the head to the mid-thigh, was carried out in
3D mode with 6-8 bed positions, each lasting 2.5 min.
CT data was utilized for attenuation correction of PET
images. The CT scan settings included a tube voltage of
120 kV, a current of 180 mA, a pitch ratio of 0.938:1, a
slice thickness of 3.75 mm, and a rotation time of 0.8 s
per round. The PET images were reconstructed using the
ordered-subsets expectation maximization (OSEM) algo-
rithm with 2 iterations, 20 subsets, and a 128 X 128 pixel
matrix size.

Public databases

Three public databases (Cleveland, Glass0O, Ecolil) with
varying sample sizes and category imbalance rates from
the KEEL website (https://sci2s.ugr.es/keel/imbalanced.
php) were used to validate the effectiveness of fea-
ture engineering such as dimensionality reduction and
instance weighting in this paper. The basic information
about the datasets, including the DLBCL dataset (the
subject of this study), is shown in Table 1.

Feature engineering

Feature extraction

Following NCCN Clinical Practice Guidelines in Oncol-
ogy (NCCN Guidelines) B-Cell Lymphomas Version
4.2020-August 13, 2020 and NCCN Guidelines for
Patients 2020-Diffuse Large B-Cell Lymphoma [17], the
clinical characteristics were extracted and organized, as
shown in Table 2.

The Department of Nuclear Medicine Imaging col-
lected the last FDG-PET/CT of the study subject, as
imaging data, before chemotherapy was administered at
the hospital. Semiquantitative eigenvalues of the MTYV,
TLG, and SUV values of the VOI of the tumor lesion
of the study subject were obtained by feature measure-
ment. In addition, quantitative eigenvalues of VOI were
obtained by radiomics analysis. The third- and higher-
order quantitative imaging features in the image were
extracted using the gray run length matrix (GLRLM),
neighborhood gray difference matrix (NGLDM), and
gray zone length matrix (GLZLM), as shown in Table 3.

Table 1 Basic dataset information
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Table 2 Clinical feature extraction
Features Grouping values N (%)
Age 0=Less than or equal to 60 years old 70 (55)
1=0lder than 60 years old 57 (45)
Gender 0=Male 60 (48)
1 =Female 67 (52)
Tumor staging O0=Early Il 41 (32)
1=Latelll, IV 86 (68)
Treatment options  1=chemotherapy 108 (85)
0=Chemotherapy +Radiotherapy 19 (15)
IPI O=Low 89 (7)
1=Hign 38 (3)
KPS 0=Greater than or equal to 80 points 83 (66)
1=Less than 80 points 44 (34)
WBC 0=Normal 93 (74)
1=Abnormal 34(26)
LDH 0=Normal 54 (43)
1=Abnormal 73 (57)
BrMG 0=Normal 34 (27)
1=Abnormal 93 (73)
ESR 0=Normal 57 (45)
1=Abnormal 70 (55)
GCB 0=No 67 (53)
1=Yes 60 (47)
HBV 0=Negative 104 (82)
1 =Positive 23 (18)
BCL-6 0=Negative 95 (75)
1 =Positive 32 (25)
Ki-67 0=Less than or equal to 90% 62 (49)
1 =Greater than 90% 65 (51)
Rituximab (R) 0=Used 75 (59)
1 =Not used 52 (41)
Feature screening

Recursive feature elimination (RFE) is used in feature
selection [18]. In this study, mean decrease of accuracy
(MDA) was chosen to measure feature importance.
MDA is the average reduction in a model’s prediction
accuracy on a sample after a feature has been excluded.
The larger the MDA, the more important the variable is
to the model.

Data Sample size Number of cases in the positive group Number of cases  Category ratios Number of features
in the negative
group

Cleveland 177 13 164 12.62 26

Glass0 214 70 144 2.06 20

Ecolil 336 77 259 3.36 16

DLBCL 127 42 85 202 44
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Table 3 PET/CT feature extraction
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Indicators Methods Features
Semi-quantitative indicators Measurement SUVmax, SUVStd, MTV.TLG
Quantitative radiological indicators Histogram Skewness, kurtosis, entropy, energy

Grayscale symbiosis matrix

Grayscale run length matrix
Neighborhood grayscale difference matrix
Grayscale zone length matrix

Sphericity, compacity volume
Homogeneity,Energy,Contrast, Correlation,
Entropy,dissimilarity

SRE/LRE,LGRE/HGRE, SRLGE/SRHGE, LRLGE/
LRHGE, GLNU/RLNU, RP

Coarseness, contrast, busyness

SZE, LZE, LGZE, HGZE, SZLGE, SZHGE, LZLGE,
LZHGE, GLNU, ZLNU, ZP

MTV Metabolic Tumor Volume, TLG Total Lesion Glycolysis, GLCM Gray Level Coevolution Matrix, GLRLM Gray Level Run Length Matrix, SRE/LRE Short/Long Run
Emphasis, LGRE/HGRE Low/High Gray Run Emphasis, SRLGE/SRHGE Short Run Low/High Gray Emphasis, LRLGE/LRHGE Long Run Low/High Gray Emphasis, GLNU/RLNU
Gray Level Non-Uniformity/ Run Length Non-Uniformity, NGLDM Neighborhood Gray Difference Matrix, GLZLM Gray Level Zone Length Matrix, LGZE/HGZE Low/high
Gray Zone Emphasis, SZLGE/ SZHGE Short Zone Low/High Gray Emphasis, LZLGE/LZHGE Long Zone Low/High Gray Emphasis, GLNU/ZLNU Gray Level Non-Uniformity/

Zone length Non-Uniformity, ZP Zone Percentage

Dimensionality reduction

Because LDA is prone to overfitting for small samples with
labeled information, PCA was chosen in this study for
reducing the dimensionality of data [19].

Instance weighting

To solve the problem of sample label class imbalance, the
proposed method adds sample weights during the train-
ing process. The location importance weight is denoted
by LI. To calculate the LI of an instance, the instance first
searches for the k nearest neighbors among all training
instances, the number of neighbors with the same label as
the instance is recorded as N, and the value of LI is defined
as follows:

NS —_

LI(x) = { 1, 71\7 Oorl

1+ 2 else
Although LI assigns different weights to instances at dif-
ferent locations, it does not consider the imbalance in the
classification task. In general, an imbalance occurs when
the number of instances of one class (the minority class)
is much less than the number of instances of another class
(the majority class). The minority class instances are more
valuable than those in the majority class. Therefore, the
minority class instances should be given higher weights.
Suppose that the number of instances of the minority class
is N,,;, and the number of instances of the majority class is
N, The imbalance cost IC of input instance x is defined

as
Noaj & minorityclass
[Cay = Nomin’ o
1,x € majorityclass

The weights of the input instances x are then defined as
follows:

W) = LIx) x IC(x)

Model construction and training
Construction of the proposed model

Single-view model

Single-view1: Training using SVM (SSVMI) only
within the image feature view.

Single-view2: Training using SVM (SSVM2) only
within the clinical feature view.

Single-view3: Training using SVM (SSVM3) within
the combined clinical and image views, and com-
parison with decision tree (C5.0), logistic regression
classification (logistic), and multi-layer perceptron
(MLP).

Multi-view model Ensemble-SVM (ESVM): An SVM
classifier is trained for the clinical view and imaging view
separately, and their classification labels are determined
by a voting method.

Multi-view maximum entropy discrimination (MVMED):
The joint distribution and common boundary y of the
parameters of the two-view MED classifiers, using clinical
features and image features, are used to satisfy the consen-
sus principle.

Canonical correlation analysis (CCA): The common
feature space is learned by maximizing the correlation
between two views (clinical and imaging) to obtain the
projection matrix, and the classifier is trained on the joint
space matrix for label prediction.
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SVM-2 K: Combines KCCA with SVM. The SVM is
trained on the joint feature space comprising clinical and
imaging features. On the basis of CCA, relaxation vari-
ables and constraints are added to satisfy the principles of
similarity and complementarity, map different view fea-
tures to different kernel spaces before obtaining the com-
mon kernel subspace, and train the weights and thresh-
olds of the SVM to obtain classification results.

In addition to the proposed SVM-2 K model, single-
view and multi-view models were constructed in this
study for performance comparison. These included CCA,
ESVM [20], MVMED [21], decision tree [22], logistic
classifier [23], MLP [24], and single-core SVM.

Model training

Following the random stratified sampling principle, the
entire dataset was randomly divided into five copies
before training, of which four copies were used as the
training set and the remaining copy was used as the test
set. In addition, to reduce the variation due to dataset
partitioning, the dataset partitioning and evaluation were
repeated 100 times and the final evaluation was based on
the mean of the 100 results.

Model assessment

Because this study was dichotomous, values of accuracy,
sensitivity, F-measure, AUC, and G-mean were used as
evaluation metrics to evaluate classification performance,
as shown in Table 4.

The results of each classifier can be classified into four
categories: true positive (TP), true negative (TN), false pos-
itive (FP), and false negative (FN). Various evaluation met-
rics can then be computed according to the model output.

Results

Validation of feature effects on public datasets

This section aims to verify the effectiveness of the feature
engineering method using PCA dimensionality reduction

Table 4 Model evaluation metrics

Page 7 of 15

with instance weighting on public datasets to improve the
model performance. Three public datasets, Cleveland,
Glass0 and Ecolil, are used to process the data before and
after feature engineering, and the SVM model is used for
training and testing. The effect of feature engineering is
evaluated by comparing AUC, accuracy (ACC), sensitiv-
ity (SEN), F1 value and G-mean.

On the Cleveland dataset, the feature-engineered SVM
model improves the AUC by 12% (95%CI:0.111 ~0.128),
the ACC by 10.1% (95%CI:0.093 ~0.109), the SEN by
20.5% (95%CI1:0.194~0.211), and the F1 value and the
G-mean by 10.4% (95%CI:0.099~0.116) and 14.1%
(95%CI:0.134 ~ 0.153), respectively (Fig. 2), the difference
was statistically significant (p <0.001). These results indi-
cate that PCA downscaling and instance weighting effec-
tively improve the model’s ability to discriminate between
minority class samples.

On the Glass0 dataset, the SVM improved the AUC by 8.3%
(95%CI:0.074~0.091), the ACC by 9.1% (95%CI:0.083 ~0.099),
the SEN by 132% (95%CL0.121~0.138), and the F1
value and the G-mean by 84% (95%CIL:0.079~0.096) and
10.9%(95%CI:0.102~0.121), respectively (Fig. 3), the differ-
ence was statistically significant (p<0.001). This result shows
that the overall performance of the model can be improved by
feature engineering.

On the Ecolil dataset, feature engineering improved
AUC by 62% (95%CIL0.053~0.070), ACC by 4.1%
(95%CI:0.033 ~ 0.049), SEN by 7.2% (95%CI:0.061 ~0.079),
and F1 value and G-mean by 5.4% (95%CI:0.046 ~0.063)
and 6.9%(95%CI:0.062 ~0.081), respectively (Fig. 4), the
difference was statistically significant (p<0.001). These
improvements demonstrate that feature engineering has a
significant gain effect on small sample datasets.

Feature engineering results for the DLBCL study dataset

The aim of this part is to improve the performance of
classification models for DLBCL patient datasets through
feature engineering and to identify the most important
clinical and imaging features. The clinical and imag-
ing data of DLBCL patients were feature extracted and

Classification model
evaluation metrics

Significance

Formula

Accuracy (ACC)

Sensitivity (SEN)

F1 score (F1)

Area under the curve (AUC)

Harmonic mean of precision and recall

tive rate (TPR) as the vertical axis
G-mean

Measures the proportion of the samples that are correctly classified

The recall rate, which measures the proportion of the samples that are correctly classified

Geometric mean of the classification accuracy of the minority class and that of the majority

_ TP+TN
ACCUraCY = oy
Sensibility = 7y
F= 2x Precision x Recall

—  Precision+Recall

Area under the ROC curve with false positive rate (FPR) as the horizontal axis and true posi-  fr= 2,

_ TP
PR = 13 rm

G — means = +/TPR x TNR

class. It is used to evaluate the performance of the model after using the unbalanced data

of the class
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Fig. 2 Comparison of classification performance of SYM before and after feature engineering on Cleveland dataset
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Fig. 3 Comparison of classification performance of SVM before and after feature engineering on Glass0 dataset

screened using SVM recursive feature elimination (RFE),
and a total of 13 features with the best performance in
cross-validation were finally obtained using ACC as a
measure (Accuracy=0.863). On this basis, feature engi-
neering was performed using PCA dimensionality reduc-
tion with instance weighting, and its impact on model
performance was analyzed.

Among the optimal features, 7 were from clinical data
and 6 were from imaging data. ipi score (MDA =14.16)
and tumor volume (MDA=11.21) were the most
important features (Fig. 5). after PCA downscaling

and instance weighting, the AUC of the SVM model
was improved by 10.5% (95%CI:0.097 ~0.109), the
ACC was improved by 9.8% (95%CI:0.091 ~0.100), the
SEN was improved by 11.9% (95%CI:0.112~0.122),
and the F1 value and G-means improved by 9.2%
(95%CI:0.082 ~0.095) and 7.8% (95%CL:0.067 ~0.083),
respectively (Table 5), the difference was statistically
significant (p<0.001). These results indicate that fea-
ture engineering significantly improves the generaliza-
tion ability and prediction accuracy of the model.
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Model performance comparison

Performance of each model on DLBCL training set

Compare the performance of different single-view and
multi-view learning models on the DLBCL training set to
evaluate the advantages of SSVM3 and SVM-2 K models.
Multiple single-view and multi-view models are used for
the DLBCL training set to compare their performance on
AUC metrics.
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AUC

ACC
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SSVM3 trained in the space of spliced clinical and
imaging features performed optimally in the AUC met-
rics (Fig. 6), outperforming SSVM2 trained in the space
of clinical features alone and SSVM1 trained in the space
of imaging features alone, suggesting that splicing the
clinical and imaging features helps to improve the predic-
tive performance of the model.

G-mean

B After feature engineering

Fig. 4 Comparison of classification performance of SVM before and after feature engineering on Ecolil dataset
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Fig. 5 Feature importance ranking

Table 5 Comparison of classification performance of SVM before and after feature engineering on the DLBCL study dataset

AUC ACC SEN F1 G
Before feature engineering 0.827+£0.024 0.863+£0.015 0.778+0.023 0.833+£0.02 0.846+0.031
After feature engineering 0.932+0.018 0.961+0.017 0.897 £0.015 0.925+0.029 0.924+0.026
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In the multi-view model, SVM-2 K outperforms
MVMED, ESVM, and CCA with an AUC of 96.2%
(95%CI:95.57% ~ 96.83%) for the training set (Fig. 7).
SVM-2 K utilizes kernel-typical correlation analysis
(KCCA) in conjunction with a support vector machine
for optimal integration of the data and learning results.

Performance of each model on DLBCL test set

The purpose of this section is to evaluate the prediction
performance of different single-view and multi-view
models on the DLBCL test set, especially SVM-2 K ver-
sus other models. We tested the performance of single-
view and multi-view models separately. The single-view
models included SSVM1, SSVM2, and SSVM3 trained
in different feature view spaces (clinical and imaging),
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in addition to comparisons with common logistic
regression models, C5.0, and MLP. Multi-view models
include ESVM, MVMED, CCA, and SVM-2 K, with a
focus on comparing the AUC, accuracy (ACC), sensi-
tivity (SEN), and F1 value vs. G-mean of each model.

Single view model performance The performance of SVM
models in different feature view spaces in the DLBCL test set is
shown in Table 6. SSVM2 trained in clinical feature space out-
performs SSVM1 trained in image feature space, while SSVM3
trained in the spliced feature space has the best performance.
The specific performance is shown as AUC reaches 86.3%
(95%C1:85.93% ~86.67%), ACC 91.6%(95%CL:90.71% ~92.49%),
SEN 832% (95%CL:82.32%~84.08%), and F1 value and
G-mean 85.7% (95%CI1:85.09%~86.31%) and 86.1% (95%

1 -
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—~ 06 |
s SSVM3
g 05
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03 —o—C50
02 r —o— MLP
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Fig. 6 Comparison of classification performance of single-view learning models on the DLBCL training set
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Fig. 7 Comparison of classification performance of MVL models on the DLBCL training set



Luo etal. BMC Cancer  (2024) 24:1495

CI:85.34% ~ 86.86%), respectively. SSVM3 makes full use of the
multi-view data by integrating the clinical and imaging features,
which makes it superior to the single-view model in terms of
performance.

Comparison with other single-view learning models Table 7
demonstrates the results of SSVM3 compared with common
single-view learning models (Logistic regression, C5.0 and
MLP). SSVM3 outperforms the other models across the board.
The specific performance is shown as AUC reaches 86.3%
(95%CI:85.93% ~ 86.67%), ACC 91.6%(95%C1:90.71% ~ 92.49%),
SEN 83.2% (95%CI:82.32% ~ 84.08%), and F1 value and
G-mean 85.7% (95%C1:85.09% ~ 86.31%) and 86.1%
(95%C1:85.34% ~ 86.86%), respectively. This result indi-
cates that SSVM3 is able to better capture key informa-
tion when combining clinical and imaging features, signif-
icantly improving the predictive ability of the model.

Multi-view model performance The test results of
the multi-view model are shown in Table 8. SVM-2 K
performed the best on all the metrics, with an AUC
of 92.1% (95%CI1:91.69% ~ 92.51%), an ACC of 96.9%
(95%CI1:96.22% ~97.16%), and F1 and G-mean val-
ues of 92.8% (95%CI:92.39% ~93.21%) and 91.4%
(95%CI1:90.78% ~ 92.02%), respectively. Although its
sensitivity (SEN=90.9% (95%CI:90.28% ~ 91.52%))
was slightly lower than that of MVMED (SEN
=91.1% (95%CI:90.44% ~91.76%)), SVM-2 K had
the best overall performance. Through the combina-
tion of kernel typical correlation analysis (KCCA) and
support vector machine, SVM-2 K is able to effectively
integrate the complementary information of different
feature views, which significantly improves the overall
performance.

Model AUC comparison  Figure 8 shows the comparison of
the AUC values of the models on the DLBCL test set. It can
be seen that the AUCs of the multi-view models are all better
than the single-view model, and SVM-2 K has the best per-
formance with an AUC of 92.1% (95%CI:91.49% ~92.71%).
This further validates that SVM-2 K can effectively improve
the prediction performance in multi-view learning.

Table 6 Comparison of SYM performance on different feature
views of the test set (%)
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Table 7 Comparison of classification performance of single-view
models on the test set (%)

Performance  MLP Cc5.0 logistic SSVM3
indicators

AUC 84.1+2.13 82.1+241 796+1.13 86.3+1.31
ACC 903+198  852+333 80.5+2.15 91.6+3.14
SEN 826+2.89 804+1.21 76.1+£247 83.2+3.11
F1 score 852+3.15 81.8+2.16 79.2+1.66 85.7+2.16
G-mean 8324283 824+1.95 787177 86.1+2.66
Discussion

DLBCL has a high relapse rate. Therefore, for each
DLBCL patient it is necessary to make a comprehen-
sive assessment of the efficacy of treatment in advance
and prepare a personalized treatment plan accordingly.
The IPI scoring system evaluates the patient’s progno-
sis only with reference to the pre-treatment clinical
characterization and ignores the role of the patient’s
prognostic factors with respect to imaging PET/CT,
including semiquantitative features (such as SUV) and
quantitative features (such as radiological features).
This is because the clinical data and imaging data origi-
nate from different sources and have different struc-
tures; in addition, their nature is different, making it
difficult to use them in an integrated manner. There-
fore, the aim of this study was to construct a prognostic
model for DLBCL patients with high predictive perfor-
mance by using a combination of KCCA and SVM to
make full use of patients’ imaging data and clinical data.

After feature screening, as shown in Fig. 5, most of
the clinical features selected have been shown to be
associated with the prognosis of DLBCL. IPI [25, 26]
is a recognized prognostic indicator for DLBCL, and
studies have demonstrated that high IPI scores are
significantly associated with poor patient progno-
sis; advanced disease stage is a risk factor for DLBCL
prognosis, and is associated with low patient survival
and short survival time [26]. Patients with primary
gastrointestinal DLBCL with elevated LDH [27] have
a corresponding reduction in overall survival and

Table 8 Comparison of classification performance of multi-view
models on the test set (%)

Performance SSVM1 SSVM2 SSVM3 Performance  ESVM MVMED CCA SVM-2K
indicators indicators

AUC 7244243 81.1+£1.13 86.3+1.31 AUC 88.1+£222 90.1+1.76 88.7+£255 92.1+1.45
ACC 81.3+341 87.1+241 91.6+3.14 ACC 928+1.32 928+1.12 9134187 96.9+1.65
SEN 70.2+4.65 789+1.91 83.2+3.11 SEN 854+3.11 91.1+£2.31 829+134 909+2.17
F1 score 750+2.33 773+1.84 85.7+2.16 F1 score 874+2.31 90.3+2.46 87.1+223 92.8+1.45
G-mean 77.6+1.44 80.1+2.01 86.1+2.66 G-mean 86.8+1.14  90.7+2.77 822+2.32 91.4+2.17




Luo etal. BMC Cancer  (2024) 24:1495

100 -

95 A

90 A

AUC (%)

80 A

75 1

70

o h

Page 12 of 15

MLP  logistic C5.0

SVM

E-SVM MVMED CCA SVM-2K

Fig. 8 Comparison of the area under the ROC curve achieved by each model on the test set

progression-free survival. According to a study by
Kanemasa et al. [27], B,-M is an important prognos-
tic factor in patients with DLBCL, and studies have
also shown that the use of immunotherapy contain-
ing rituximab (R) is an effective chemotherapy for
patients with limited aggressive non-Hodgkin’s lym-
phoma with a poor prognosis or high disease grade
[28]. Of the imaging features, SUVmax and MTV are
the most common semiquantitative radiological fea-
tures: they have been extensively reported to correlate
with disease-free survival in DLBCL [29]. Volume and
compacity reflect the response to tumor shape and vol-
ume, which is a factor that influences disease severity
and treatment difficulty. Kurtosis is a statistic of voxel
points in the histogram analysis of the patient’s PET
image, and is quantitatively descriptive of the tumor
in radiology. GLNU is a higher-order statistical feature
extracted from the voxel points of the image by matrix
computation using the GLRLM statistical model [29,
30], and it also shows the prognostic impact of higher-
order radiologic features on DLBCL.

To solve the problem that the small sample size and
unbalanced class distribution of DLBCL patient data
may affect the performance of prediction models, this
study used feature engineering including PCA and
instance weighting. Table 4 shows that feature engi-
neering is helpful for improving classification perfor-
mance: the AUC of the SVM learner on the DLBCL
study dataset was increased by 10.5% after PCA and
instance weighting. Many studies in recent years have
shown that the problem of class imbalance in data
seriously affects the classification accuracy of predic-
tion models. Because there are far more instances in
the majority class than the minority class in the origi-
nal data, and the minority class instances are less
informative, the classification model will be largely

biased toward the majority class in the training process
because this achieves higher accuracy. Therefore, the
model may not be sufficiently sensitive to the minority
class instances, resulting in low sensitivity. In addition,
instances in different locations have different impor-
tance in the classification task. Boundary instances
have a significant effect on classification, whereas inter-
nal instances contribute little to the classification task.
Therefore, it is unreasonable to treat all instances in
the training set equally. Appropriately assigning high
weights to boundary instances can provide advantages
for the classification task. In the proposed method,
location weights are added to the category weights,
both to optimize the final decision surface of the clas-
sifier and to enhance the classification performance for
the minority class, thereby improving the sensitivity
and thus the AUC.

To solve the problem of how to adequately and ration-
ally use the imaging data of DLBCL patients to provide
reference values for patient prognosis, this paper pre-
sents a MVL method that combines KCCA with an SVM
to construct the SVM-2 K model for patient progno-
sis, and compares its results with those of a single-view
learning model.

Table 6 shows that, of the single-view learning models,
SVM achieved the best performance. MLP and C5.0 both
realize linear to nonlinear conversion by adding interme-
diate layers. However, because of the problem of over-
fitting and the poor robustness of decision trees, single
decision trees are often not as good as they should be in
practical applications. SVM makes effective use of kernel
methods for nonlinear transformations and has lower
computational complexity than MLP and decision trees,
which makes it a good choice for solving nonlinear prob-
lems on small datasets. As shown in Fig. 6 and Table 5,
the classification performance of SSVM3 (AUC=286.3%),
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trained in the feature space that combines imaging fea-
tures with clinical features, was better than that of
SSVM1 (AUC=72.4%) and SSVM2 (AUC=81.1%). This
proves that combining the clinical features with imaging
features for training is helpful for improving the perfor-
mance of classification. It also proves indirectly that the
semiquantitative features and quantitative radiological
features of PET/CT images are valuable for the prognosis
of patients with DLBCL. The performance of SSVM2 was
better than that of SSVM1, which indicates that the clini-
cal features extracted in this study have higher prognostic
value than the imaging features that were extracted.

Figure 8 compares the performance of the MVL mod-
els ESVM (AUC =88.1%), MVMED (AUC=90.1%), CCA
(AUC=88.7%), and SVM-2 K (AUC=92.1%). All results
are better than the results of the best-performing single-
view learning model SSVM3. The results show that the
performance of MVL models on the dataset used in this
study is better than that of single-view learning models.
Most previous DLBCL prognostic studies were con-
ducted using either clinical data alone or imaging data
alone. Wang et al. [31] assessed the predictive accuracy
of tumor recurrence in DLBCL patients by using ROC
curves and obtained a sensitivity of 83.3%, specificity
of 78.3%, and AUC of 0.864. Gong et al. [32] analyzed
the risk factors associated with recurrence in DLBCL
patients, and the 1-year, 2-year, 3-year, and 4-year AUC
values were 0.812, 0.850, 0.837, and 0.801, respectively;
this performance is not as good as that of the MVL
model designed in our study. If it uses clinical data alone,
a model cannot make use of the important imaging data
generated during patient treatment; if it uses imaging
data alone, it omits key clinical information. In addition,
clinical data and imaging data are not distinguished by
algorithms that merge all features to adapt to the learn-
ing environment when dealing with multi-view feature
data. Such direct merging ignores the attributes of the
same object distributed in different feature spaces with
different data-specific statistical properties and different
physical significance. This reduces the amount of infor-
mation that the model learns from the data, resulting in
worse performance.

The comparison of classification performance on the
test set by each multi-view model, in Table 7, shows that
the proposed model SVM-2 K achieved the best over-
all performance (AUC=92.1%, accuracy=96.9%, sen-
sitivity=90.9%, F1=92.8%, and G-mean=91.4%). The
CCA and MVMED models both consider the correla-
tion between view features but ignore the differences
between different views (i.e., complementarity). The pro-
posed model SVM-2 K uses an insensitive L1 parametri-
zation when considering the constraints of correlation
and uses slack variables to measure the number of them
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that do not conform to the similarity; to some extent,
this can make better use of the complementary informa-
tion between different features in the data and thereby
improve the performance of the model. In a sense, MVL
can also be referred to as integrated-view learning. The
ESVM evaluated in this study uses the method of train-
ing an SVM classifier for the clinical view and imaging
view separately, and integrating the classification results
obtained under each view by the voting method for late
integration. SVM-2 K combines KCCA and SVM and
constructs their respective kernel matrices using kernel
functions for different feature types to represent the local
characteristics, evaluates and fuses each kernel matrix
to reflect the global characteristics, and finally classifies
them through the fused kernel matrix. Farquhar et al.
[33] presented both experimental and theoretical analy-
ses of SVM-2 K, showing superior results.

The innovations of this study include the following.
First, in this study, not only conventional semi-quanti-
tative metrics were used, but also more complex quan-
titative features of higher-order imaging were extracted
by a radiomics approach, which provided more detailed
and potentially more valuable information about the
prognosis of patients with DLBCL, and improved the
predictive performance of the model and the value of its
clinical application. Second, because clinical data and
imaging data have different patient categories and are of
different nature, the modeling scheme of MVL is used
to rationalize their use and improve the performance of
classification. Third, our model handles small samples of
class-imbalanced data using PCA and instance weighting
to achieve superior performance.

The shortcomings of this study are as follows. First,
although the genetic data of DLBCL patients have been
shown to have prognostic value in a large number of
studies, because of the difficulties of collecting and
testing genetic data of patients, such data have not been
used for modeling in this study. Second, this research
was based on the data provided by a specific hospital.
Therefore, external validation is necessary to evaluate
the generalizability of the model and reproducibility of
the results.

Conclusions

In this paper, we mainly propose the use of KCCA
and SVM methods to model the prognosis of DLBCL
patients. After feature engineering, such as research
object screening, feature extraction, feature screen-
ing, dimensionality reduction, and instance weight-
ing, we divide the data into training and test sets, and
finally train the proposed model and evaluate its per-
formance. The results lead to the following conclusions.
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1. Feature engineering, including dimensionality reduc-
tion and instance weighting, largely solves the problem
of decreased sensitivity when the model is trained on
small samples with imbalanced class distribution. 2. The
semiquantitative features of PET/CT images and the
quantitative radiological features have some prognostic
value for patients with DLBCL. 3. The performance of
the MVL model is better than that of the single-view
learning model; the proposed model SVM-2 K has the
best overall performance and can accurately predict
the prognosis of patients, which is important for the
treatment of DLBCL patients and assisting doctors’
decision-making.
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